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The 
P 

resent paper concerns the evolution of the fi ure and the conditions of detach- 
ment o a thin liquid film wetting a solid sphere as unctions of the angular velocity of B 
rotation of the sphere. At zero angular veloci 

? 
the film forms a uniform layer on the 

sphere. As the angular velocity increases the rim is first “squashed” at the poles due 
to centrifugal and ca illary forces. 
ture and slides towar B 

The film in the polar area then ex eriences rup- 
the equator. With further increases in velocity $e riz-shaped 

film layer at the equator detaches itself from the sphere. The evolution of e equilib- 
rium figure of such a film differs markedly from the equilibrium figures of a homoge- 
nous rotating liquid mass acted on by surface tension forces as investigated b several 
authors [I]. Formally this is attributable to the presence of a boundary con d! ltion (the 
wettfng angle) at the boundary between the film and wetted sphere. 

1, Formulation of tha problem. We shall consider the axisymmetric 
equilibrium figures of a thin Iiquld film which coats a rotating solid sphere. These 
figures corms 
component 0 P 

ond to “solid rotation” states, 
velocity, 

i.e. to states in which only the azimuthal 

differs from zero. 
We choose the coordinate system in such a way that the r -axis is directed along the 

axis of rotation. 
The boundary conditions at the free surface of the liquid film are of the form [I] 

Here P is the angular velocity of rotation of the coated sphere, p is the density 
of the liquid making up the film, u is the coefficient of surface tension, Rs and R, 
are the principal radii of curvature of the free surface of the film, and PO is a const- 
ant appearing in the expression for the pressure. In the case where the liquid film coats 
the entire surface of the solid s here and where there is no external pressure, p. repre- 
sents the pressure at the axis 0 P rotanon. 

To determine the shape of the free surface of the film we need merely (b virtue of 
axial symmetry) find its equation in the meridional cross section, e. g. in x e cross sec- 
tion-y = 0. Substituting the expression for the radii of curvature 

(1.3) 

into (1.2), we obtain the equation of the curve I - I (2) which describes tie shape 
of the meridional cross section of me film 

(1.4) 

Multiplying (1.4) by o and integrating, we obtain 
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(i-5) 

Here 8 is the integration constant. Let us introduce the following new variables and 
dimensionless angular velocity: 

where R is the radius of the sphere. 
Equation (1.5) becomes 

(i.7) 

or (if we solve it for I’), 

r 2’ = 
c+sz’+o’z( 

)/x’ - (c + rxa + o’z*)’ (1.8 

In (1.7) and (1.8) we have pre- 
served our earlier symbols for the 
coordinates and the constant e; 
instead of p. we have introduced 
the dimensionless parameter S. 
In computing I (c) we must take 

E 
the minus sign in the first quadrant 
and the 
rant in tI 

lus sign in the fourth quad- 
e left side of (1.8). To 

Fig. 1 Eq. (1.8) we must add the condit- 
ion of constant film volume and the 

uoundary when such a boundary arises. 
wetting condition at the film-sphere 

These conditions enable us to determine all of 
the integration constants (including s and e). 

We note that as long as me film wetting the sphere remains a connected domain its 
free surface can be zero-connected (shell, Fig. la), simply connected (drop, Fig. lb), 
or doubly connected (belt, Fig. lc). 

2. Equilibrium of the thell. If the film covers the entire s 
free surface is the same as in the case of a rotating homogeneous liqur .cf 

here, then in 
mass, The ro- 

tation of a homo 
% tation it has the s 

enous liquid mass is investigated in [l]. It is shown that with slow ro- 
ape of an ellipsoid of rotaflon with the semiaxes (1 -I- g) along a 

and y and the semiaxis (1 -I- g) II - 0) (1 + g)‘] along s. In this case the quantity 
g can be found from the volume V of the film, 

‘1, If (I + g)’ Ii - 0’ (i + g)‘] R’= ‘/# n R' + V (2.1) 

Here and below we assume that the volume of the film is much smaller than that of 
the wetted sphere (that the film is thin). Here the film remains zero-connected (a shell) 
onl 

r: 
in the case of slow rotations, i.e. for ge 1. Bearing this in mind we find from 

(2. ) that 

8 = ‘/,v/ nR'+ ‘/a 19 (2.2) 
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The thickness of the shell at the poles is given by 

0 + d 11 -~(l+g)']-i~l/,vI~~-'/,~' (3.3) 

Thus, with increasing angular velocity of rotation the thickness of the shell at the 
poles diminishes and finally becomes zero, when 

Because of symme 
7 

the shell ruptures at the two poles at the same time (provided 
its state is unperturbe ). This results in the formation of a liquid belt with a doubly 
connected surface. 

8. Equilibrium of the liquid belt. The state characterized by the liquid 
belt which replaces the shell state can, on the other hand, be considered quite indepen- 
dently of the shell state by virtue of the fact that a doubly connected film.(belt) can 
also exist in the absence of rotation. The figure of this liquid belt, which is by hypo- 
the&symmetric with respect to the equator, is described by Eq. (1.8). To this we must 
add the wetting condition 

dr / dt = tg (a - Cl,) (3.f) 

Here a is the angle of wetting (the contact angle); 3, is the polar angle defining 
the position of the film-sphere boundary in the first quadrant. because the belt is sym- 
metric with respect to the equator we need only consider (1.8) in the first quadrant. 
The wetting condition at the second boundary of the belt lying in the fourth quadrant 
is then replaced by the condition that dr / dz become infinite at the equator, i.e. for 
5-O. 

Let us consider the figure of the liquid belt for o = 0. From (1.8) we have 
r 

s c+s+r 
-_I= 

1+ ” Jfra - (c + sz’)’ d= 
We denote the dimensionless thickness of the belt for s = 0 (at the equator) by R. 
Inte 

a 
ral(3.2) can be expressed in terms of elliptic inte 

P 
rals of the first and second 

kind. owever, it is impossible to find the dependence o c and s on the wetting 
angle in explicit form. We shall therefore carry out our computations for the case 
a = I/, n. The belt contracts to a narrow “cord” at the equator, and 8, turns out to 
be close to I/, n. This enables us to simplify (3.2) by setting 

t=i+u (u< f) (3.3) 

Expanding the inte.grand in (3.2) in powers of u and retaining the principal terms 
only, we obtain 

u 

--L= s (3 + 4 + ” (8 - 4 
)/I--[(s+c)+u(s-cc)]* d” 

Since ax/ du = - cv for u = B, we have 

(8 + c) + H (I - c) = i (3.5) 
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Next, we integrate (3.4) with allowance for (3.5), 

THUS, I (r) is a ~imlax arc of radius I I (I - c) whose center can be placed on the 
surface of the wetted sphere (8 + e = O), inside the sphere (t + c > 0) , or outside it 
(s + c < 0). From geometric considerations (for a thin film) we see that the wetting 
angle is close to sisrr for 8 + c = 0 , that a <a/, n for I + c > 0 and that 
a>‘/, IT for I + c ~0. From (3.1) and (1.8) we infer that 

- sin (a - t3,) = (If c) + Y+ (t - e) (3.7) 

The quantities 9, and u+ can be found by recalling that they are the coordinams of 
the intersection of circle (3.6) with the circle i i- Z = i. Computing the volume of 
the liquid belt with the same degree of accuracy as all our previous calculations (which 
enables us to use Guldin’s theorem), we find that 

1+si 1 
V 

dnRt= s 
x (s)dz- 

s 
vnifx = (s - c)* [sin (a - 8,) eos (a - 8,) + 

x. t* 

+ l/m + ain (a - %I I+ 0 (~3 (3.3) 

Limiting ourselves to the case u s s/s x, we begin by setting 9, lip u. We then find 
from (3.8) that 

i V 

1 ) ‘1s 
-=w 1-c (3.9) 

From (3.6) we find that I, - f i (o - c). Recalling that I,, - a01 6., we obtain 

Finally, from (3.5) - (3.7) we have 

*+a i V i 
=4x, H=*_o= 

V ‘tr 
I---E = 2 (J - 0)’ 1 1 2n’R’ (3Ai) 

Similar computations carried out for a - 
the form 

O,, # 0 yield 8. as a function of a in 

0 c=+-(&)‘“[i+-f(+-a)] (3.42) 

We assume here that r/s A - a is small. Equation (3.12) shows that 9, depends 
weakly on Q, i.e. that over a large range of contact angles the quantity 9, remains 
close to I/, n, and the liquid layer lies at the equator. 

4. Datrchm6nt of th6 filIZi. As o increases the sha e of the liquid belt 
changes, bulgin 

8 
out at the equator. For some value of the angu ar velocity an inflec- P 

tion point (Fig. a) appears in the cross section of the free surface. This corresponds 
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to the case where the right side of (1.8) has a multiple root. 
Here 

8’ C 
-- 

~--*2-0 (4.1) 

Since the right side of (1.8) vanishes not more than twice 
(in the first quadrant), the inflection point clearly does not 
appear for wetting angles larger than ‘/, fi, since for a > 
‘I, fi there is alwa s an 2 such that a’ = 0. This is a 

maximum point, and J erefore cannot be an inflection point. 
Further on we shall consider wetting angles close to r/* rr 
but not exceedin 

P 
I/, n. With such contact angles further 

Fig. 2 increases in angu ar velocity result in a resolution of the in- 
flection point into a maximum point which drifts away from 

tile sphere and a minimum point lying close to the sphere. The film cross section re- 
sembles that of a bubble (with a neck at the minimum point) (Fig. 2b). With increa- 
sin 0 the thickness of the neck diminishes and finally becomes zero (the film becom- 
es 9 etached from the sphere). 

Let a < I/, n. We denote the positions of the minimum and maximum of the funct- 
ion I (2) by tr and z,, respectively. Next, we introduce the notation 

r, - zl= A, t= +,+ A(&+V,), A =4dA’ (4.2) 

Recalling that At C 1 and retaining only the principal terms in (1.8), we obtain 

E. [ 1 - A’ (E’ - Q)+ (4.3) 

Here & 0 is the value of E at z = 0 (i.e. at the equator). Let us convert to the 
new variable 

in the integrand. 

E = I(4 + A) I 4A]‘h co9 f (4.4) 

Equation (4.3) now becomes (P = l/s (4 -I- A)) 

x=&=~ v, __,sin2t dt= ,&W% N+=3V. 41 s 
1 -2kssin1t 

(4.5) 

Here F and E are elliptic inte rals of the first and second kind. 
At the instant of detachment of i e film the neck thickness, i.e. I (~3, becomes 

equal to zero, 

to 

o ;1-_k’sinPt dt =O s - 2ka sin’ t 
(4.6) 

Since the position of the neck corresponds to the condition t’ * 0, this implies that 

t-2 k’ sinslo = 0 (4.7) 
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Of rhe two roots of Eq. (4.7) the smailer root corresponds to the maximum of the 
function a (x) ; the larger root corresponds to the mirdmum, i.e. to the neck. ‘Lhfs 
large root is equal to 

tpr=ac-maain(i~k~ (4.8) 

Thus t condition (4,6) becomes 

Referring to tables of elliptic integrals [sf , we can use this equation to find the va- 
lue of kr, and then use (4.4) to find the value of A for the state corresponding to de- 
rachment of the film, 

ka = 0,X3, A = f.84 (4.fO) 

The angular velocity for the detachment state can be readily determined in the case 
where the wetting angle is exactly s[, A. In this case the neck lies on the sphere. so 
that 8, = “is n1 and the film becomes compbteely detached. 

Calculating the volume of the film whose figure is given by Formula (4.5) and equa- 
ting the resulting volume to the specified volume V, we obtain 

4n R’ 0.272 A’ = V (4.1Q 

From (4.2), (4. IO), (4. II) we obtain the dimensionless angular velocity of detach- 
ment, 

0 = (‘I, x Iz’ / Y$tfi (433 

Calculatians carried out for o < s/r n (but r/s n- a< 1 
velocity of detachment decreases with decreasing 

) indicate that the angular 
a . 

For a < */, n part of the film remains on the sphere after detachment of the greater 
portion of the liquid mass. 

In conclusion we note that random perturbations or deviations of the surface of the 
wetted body from sphericity can result in rupture of the film at one of the poles only 
at small angular velocities. Evolution of the film figure in this case takes the form of 
a liquid belt not symmetric with respect to the equator and requires further investiga- 
tion, 
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